Department of Nuclear Engineering

More ...

About Department of Nuclear Engineering

Facts about Department of Nuclear Engineering

We are proud of what we offer to the world and the community




Academic Staff





Who works at the Department of Nuclear Engineering

Department of Nuclear Engineering has more than 11 academic staff members

staff photo

Dr. Karima Mohamed Ali Elmasri


Some of publications in Department of Nuclear Engineering

Study of Dose Distribution around a PET Facility in a Nuclear Medicine Clinic

Abstract: Modern PET/CT clinics consist of a scanner room housing PET/CT unit and a control area, two or more waiting rooms where patients rest prior to scanning, and a hot lab where doses are prepared. The 511 keV photons from the PET positron emitting isotopes are the source term for the waiting rooms and the hot lab, while both the 511 keV photons and the polyenergtic spectrum of x-rays from the CT unit must be considered in the scanning roomThis study is intended to estimate dose distribution resulting from using a FDG procedure (555 MBq). The dose distribution is evaluated in injection room, waiting room, and scanning room using two methods. The first method is the analytical method whids is based on AAPM report № 108, while in the second method the dose distribution was simulated using the Monte Carlo code EGSXYZnrc .In the Monte Carlo method some parameters such as the optimal number of histories and the cut off energy of the electron are found to have a significant effect on the results. These parameters are tested and those values with less statistical error are adapted for the calculations.A good agreement between the two methods has been achieved. The dose distribution in the uptake room , waitting room and the scanning room appears to be below the annually dose limit and does not exceed 1% at the adjacent areas.
مريومة البهلول القرقني (2009)
Publisher's website

A Comparative Study Using Monte Carlo Codes for the Simulation of Photons Emitted by the Elekta Sl-25 Linear Accelerator at the Tripoli Medical Center

Abstract: A 6MV and 15MV electron beams produced by the Elekta precise SL-25 linear accelerator at the Tripoli Medical Center (TMC) were modeled using the MCNP-4C code. Firstly the photon beam energies are tuned by comparison to experimental results previously performed at the TMC. Only the beam energy of the 6MV is modified to 6.2MV. Secondly the percent depth dose curves and beam profiles are calculated for the two energies in different field sizes in the water phantom. Matching with experiment is within an acceptable published allowance of 2%. The distances at which the maximum depth dose in the water phantom is reached are calculated as (1.5cm -1.7cm) for the 6.2MV setting and (2.7cm-3cm) for the 15MVsetting.
خديجة عمر بن ابراهيم (2011)
Publisher's website

Evaluation of vertebral fracture assessment images for the detection of abdominal aortic calcification

Dual-energy x-ray absorptiometry (DXA) is an established modality for the assessment of bone mineral density. DXA has also been used for the detection of abdominal aortic calcification (AAC) using lateral images taken for vertebral fracture assessment (VFA). In this phantom study, the capability of VFA for the detection of AAC was investigated. A Perspex phantom of variable width in the range 15-30 cm was used to simulate abdominal soft tissue. Aluminium strips of thickness 0.05-2.0 mm were sandwiched between two halves of the phantom to mimic aortic calcification. VFA images of the phantom were acquired in single-energy mode and analysed by placing regions of interest over the aluminium strip and an adjacent area of Perspex. For each phantom width, the minimum detectable aluminium thickness was assessed visually and related to contrast-to-noise ratio (CNR). Linearity of pixel value with aluminium thickness was tested by linear regression and correlation. Repeatability was measured with five repeated scans for selected phantom configurations. The minimum thickness of aluminium that could be visualised increased with phantom width and varied from 0.05 mm at 15 cm Perspex to 0.5 mm at 30 cm Perspex; the CNR threshold was about 0.03. At all phantom widths, the variation of pixel value with aluminium thickness was strongly linear (r²>0.98, p
Karima Elmasri, William David Evans, Yulia Hicks(6-2017)
Publisher's website

Documents you Need